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ABSTRACT

Soil liquefaction during seismic events poses significant risks to infrastructure and human safety.
Traditional machine learning (ML) models often struggle with the sparse, nonlinear, and heteroge-
neous data typical in geotechnical engineering, as these characteristics hinder their ability to learn
generalizable patterns and capture the complex interactions among soil parameters. This paper
introduces a novel approach that leverages large language models (LLMs) to interpret geotechnical
data by transforming structured datasets into semantic narratives. By doing so, we improve the
generalizability, interpretability, and reliability of liquefaction risk assessments. A working MVP is
available for public testing at https://app.geoliquefy.com.

1 Introduction

Geotechnical engineering relies heavily on empirical data from soil investigations, which are often site-specific, sparse,
and difficult to generalize [1}2]]. Conventional models—Ilike support vector machines or decision trees—are constrained
by their inability to extract contextual dependencies between features such as soil composition, groundwater depth, and
seismic loading [3} 4} 5116, [7]. Key challenges include:

» Data Sparsity: Site investigations rarely yield more than a few hundred labeled instances. This limits the
performance of data-hungry models.

* Nonlinear Interactions: Soil behavior under seismic loads is governed by complex, nonlinear interactions not
easily captured in tabular form.

» Expert Rule Dependence: Many traditional methods still rely on empirical charts or domain rules, which are
hard to encode into ML systems.
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Recent advances in LLMs offer an opportunity to represent these multifaceted relationships in a more expressive,
contextualized format [} (9, [10].

2 Language Models as Interpretive Frameworks

Transforming geotechnical datasets into structured textual narratives allows us to capitalize on the interpretive capabili-
ties of LLMs. For example, a sample entry like:

"At 10 meters depth, the soil is silty sand with an SPT-N value of 12, saturation of 90 %, and effective overburden stress
of 150 kPa under a PGA of 0.25g."

This transformation allows the LLM to:
* Model Cross-Feature Interactions: Transformer-based models can attend to distant and nonlinear dependencies
within the data.
* Enable Few-Shot Learning: LLMs pretrained on broad corpora adapt effectively to small geotechnical datasets.
* Provide Explainable Outputs: Generated rationales and confidence scores align with the needs of risk-sensitive

domains.

LLMs such as GPT, LLaMA, and Mistral, fine-tuned on domain-specific corpora, offer a flexible foundation for
data-to-insight pipelines in geotechnical engineering, as demonstrated by performance metrics like accuracy, sensitivity
to edge cases, and alignment with expert rationales.

3 Encoding Geotechnical Semantics

A core contribution of GeoLiquefy is a domain-specific serialization pipeline that transforms structured geotechnical
data into natural language inputs. Our method includes:

» Template-Based Encoding: Uniform text generation for soil layers, including material type, density, SPT
values, saturation, and confining stress.

* Domain-Aware Augmentation: Enriching inputs with regional seismicity, CPT/VS profiles, and groundwater
tables.

* Fine-Tuned LLMs: Model enhanced over a particular chosen data set.

This textual encoding bridges the gap between numerical representation and geotechnical semantics, enabling better
generalization across geologies—for instance, by allowing models trained on one region’s data to perform well in
different seismic or soil contexts.

4 Integration with Geotechnical Pipelines

GeoLiquefy’s architecture supports seamless integration into existing geotechnical workflows:

* Input Layer: Accepts CSV or JSON formats with soil profile data.
* Transformer Inference Layer: Processes serialized narratives through fine-tuned LLMs.

5 Web Deployment and Public MVP

A public MVP of the GeoLiquefy platform is accessible at:
https://app.geoliquefy.com

The platform allows users to:

* Upload site data for instant liquefaction risk analysis.
* Visualize risk levels by depth and location. (upcoming)
* View LLM-generated justifications for each prediction. (upcoming)

* Download formatted risk reports for documentation. (upcoming)
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6 Conclusion

GeoLiquefy reimagines geotechnical risk assessment through the lens of language modeling. By embedding soil
profiles into semantically rich textual formats, LLMs provide context-aware, generalizable predictions that surpass
the limitations of traditional ML methods. This approach brings Al and domain science into synergy, unlocking new
possibilities in infrastructure safety, planning, and disaster mitigation.
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